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ABSTRACT
We present multiplexed gradient descent (MGD), a gradient descent framework designed to easily train analog or digital neural networks
in hardware. MGD utilizes zero-order optimization techniques for online training of hardware neural networks. We demonstrate its ability
to train neural networks on modern machine learning datasets, including CIFAR-10 and Fashion-MNIST, and compare its performance to
backpropagation. Assuming realistic timescales and hardware parameters, our results indicate that these optimization techniques can train a
network on emerging hardware platforms orders of magnitude faster than the wall-clock time of training via backpropagation on a standard
GPU, even in the presence of imperfect weight updates or device-to-device variations in the hardware. We additionally describe how it can
be applied to existing hardware as part of chip-in-the-loop training or integrated directly at the hardware level. Crucially, because the MGD
framework is model-free it can be applied to nearly any hardware platform with tunable parameters, and its gradient descent process can be
optimized to compensate for specific hardware limitations, such as slow parameter-update speeds or limited input bandwidth.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0157645

I. INTRODUCTION

As the applications of machine learning and artificial intelli-
gence have grown in size and power, so have their implementation
costs and energy usage, leading to a significant effort toward build-
ing custom hardware that can perform these tasks at high speeds
with lower energy costs.1 A number of hardware platforms have
emerged using analog,2 digital,3,4 or mixed-signal processing5 that
will potentially offer increased operational speeds and/or reduced
energy costs.6 However, many of the most promising hardware neu-
ral networks only perform inference, as integrating in situ training
on these platforms has proved insurmountable. At the same time,
the largest portion of energy costs in modern applications is spent
on the training process,7 usually via gradient descent, with the gradi-
ent calculated via backpropagation. While backpropagation is by far
the most computationally efficient method of computing the gradi-
ent in software, this does not mean that it is the fastest, most robust,

or most energy efficient technique in every hardware platform,8 as
evidenced by learning in the brain.9,10

Although often conflated, training via gradient descent does
not require backpropagation—backpropagation is only used to cal-
culate the gradient. Other methods for computing the gradient in
neural networks exist, but are much less efficient in software than
backpropagation and so are rarely used in today’s machine learning
applications. This is not generally true in hardware, where backprop-
agation may not only be challenging to implement but also may not
be the most efficient way to compute the gradient.

Of particular interest in hardware are model-free methods, in
which we require no knowledge of the internal structure of the
network (e.g., topology, activation function, derivatives, etc.), only
the ability to perturb the network’s parameters and measure the
network’s response. The simplest example of such a method is finite-
difference,11 which has been employed for chip-in-the-loop train-
ing.12 However, finite-difference has several other disadvantages

APL Mach. Learn. 1, 026118 (2023); doi: 10.1063/5.0157645 1, 026118-1

© Author(s) 2023

D
ow

nloaded from
 http://pubs.aip.org/aip/am

l/article-pdf/doi/10.1063/5.0157645/18017061/026118_1_5.0157645.pdf

https://pubs.aip.org/aip/aml
https://doi.org/10.1063/5.0157645
https://pubs.aip.org/action/showCitFormats?type=show&doi=10.1063/5.0157645
https://crossmark.crossref.org/dialog/?doi=10.1063/5.0157645&domain=pdf&date_stamp=2023-June-26
https://doi.org/10.1063/5.0157645
https://orcid.org/0000-0002-8553-6474
https://orcid.org/0000-0002-6626-2076
https://orcid.org/0000-0003-2809-9287
mailto:adam.mccaughan@nist.gov
mailto:sonia.buckley@nist.gov
https://doi.org/10.1063/5.0157645


APL Machine Learning ARTICLE pubs.aip.org/aip/aml

that prevent its widespread implementation in hardware, includ-
ing the requirements for extra memory at every synapse and global
synchronization. Fortunately, there are a variety of other model-
free methods that overcome some of the issues associated with
finite-difference.13,14

In this paper, we show that model-free perturbative methods
can be used to efficiently train modern neural network architec-
tures in a way that can be implemented natively within emerging
hardware. These methods were investigated for training VLSI neural
networks beginning in the 1990s,15–24 and more recently on mem-
ristive crossbars25 and photonic hardware,26 but all these demon-
strations have been very limited in scale, comprising small datasets
with only a few neurons. Below we describe a framework for apply-
ing these techniques to existing hardware at much larger scales, with
an emphasis on creating simple, highly localized circuits that could
be implemented on-chip if desired. The framework is also exten-
sible to training existing hardware systems via a chip-in-the-loop
technique. We note that these methods have also been adapted in
forward gradient approaches using auto-differentiation, which have
attracted recent interest in the machine learning literature.27–29

We show that under realistic assumptions of the operating
timescales of analog and digital hardware neural networks, one can
train hardware to solve modern datasets such as CIFAR-10 orders
of magnitude faster than training a software network on a graph-
ics processing unit (GPU), even in the presence of signal noise and
device-to-device variations in the hardware. A major advantage of
this framework is that it can be used to perform online training
of hardware platforms originally designed only for inference while
making minimal hardware modifications.

II. MULTIPLEXED GRADIENT DESCENT
A. Computing the gradient with perturbations

We begin with the basic assumption that we have some hard-
ware with programmable parameters (e.g., weights and biases) that

can perform inference. Our goal is to augment the hardware mini-
mally such that it can also be trained via gradient descent. We will
show how to configure the hardware such that the network as a
whole automatically performs gradient descent, without backprop-
agation. As an example, assume we have a hardware instantiation
of a feedforward multi-layer neural network as shown in Fig. 1.
The hardware takes time-varying inputs x(t), training target ŷ(t),
has variable parameters θ, outputs the inference y(t), and computes
a cost C(y(t), ŷ(t)). To allow us to compute the gradient of such
a system, we first add a small time-varying perturbation θ̃i(t) to
each parameter base value θi [Fig. 1(a), inset]. This perturbation will
slightly modulate the cost C, and that modulation will be fed back to
the parameters. This process will ultimately allow us to extract the
gradient of the system.

Although the perturbations can take a variety of different
forms, we will first describe this process by using sinusoidal per-
turbations as they are conceptually straightforward to understand.
In this scenario, each parameter θi is slightly modulated at a
unique frequency ωi and amplitude Δθ, giving the perturbation
θ̃i(t) = Δθ sin (ωit). As each parameter is modulated, it slightly
changes y(t), which in turn changes the cost. Thus, if the parameters
are modulated by frequencies ω1, ω2, ω3, etc., those same frequencies
will necessarily appear as small modulations in the cost C̃(t) on top
of the baseline (unperturbed) cost value C0 such that

C(t) = C0 + C̃(t) = C0 +∑
i

ΔCi sin (ωit). (1)

If we remove C0, we are left with a time varying signal
C̃(t) = ∑i ΔCi sin (ωit) corresponding only to the effects of our
parameter perturbations. The amplitude ΔCi is simply the amplitude
of change in the cost due to θ̃i(t), the perturbation of parameter i.

Since the gradient with respect to the cost dC/dθ is composed
solely from the partial gradients dC/dθ = (∂C/∂θ1,∂C/∂θ2, . . .), if
we can extract ΔCi for each parameter, we can produce an esti-
mate of the complete gradient G = (ΔC1/Δθ1, ΔC2/Δθ2, . . .). Now

FIG. 1. (a) Schematic diagram showing the operation of the MGD framework in a feedforward neural network using example sinusoidal perturbations. [(a), inset] Each
parameter i is modulated slightly from its base value θi by the perturbation θ̃i . The result of these perturbations causes a modulation in the cost C̃, which is globally broadcast
back to all the parameters. (b) A homodyne detection process is used to compute the partial gradient approximations Gi from the integrated product of θi and C̃. This partial
gradient is then used to update θi in the approximate direction of the gradient. (c) Example perturbation types that can be used with this process.
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the task becomes to extract individual ΔCi out of the summed sig-
nal C̃(t). Fortunately, to extract a given ΔCi, all we need to do
is integrate the product of the input perturbation θ̃i(t) with C̃(t).
The integration takes the form of a homodyne detection, where
unwanted perturbations (frequencies) from other parameters are
eliminated via integration,

Gi =
1

Δθ2
i

1
T∫

T

t=0
∑

k
ΔCk sin (ωkt)Δθi sin (ωit)dt

=
ΔCi

Δθi
as T →∞, (2)

where 1/Δθ2
i is a normalization constant.

The value Gi is the approximation for the partial gradient for
parameter i. G approaches the exact gradient when both T →∞ and
the amplitude of the perturbation Δθi approaches zero and is only
an approximation otherwise. Fortunately, even at realistic timescales
and amplitudes, G contains meaningful information and can be used
to perform gradient descent.13

For illustrative purposes we have described the algorithm using
sinusoidal parameter perturbations. However, any collection of
orthogonal, mean zero perturbations can be used,14 including a vari-
ety of analog and discrete perturbations as shown in Fig. 1(c). In
general, we will be integrating the product ei(t) = C̃(t)θ̃i(t)/Δθ2

i ,
which we refer to as the error signal, and Gi will be given by

Gi = ∫

T

t=0

C̃(t)θ̃i(t)
Δθ2

i
dt. (3)

Note that here and in the simulation results, Gi is being accu-
mulated with time and is not normalized by 1/T, unlike Eq. (2).
As described later, this allows us to vary the integration time with-
out greatly impacting the rate of training—equivalently, one can
integrate for a long time resulting in a large step down the gra-
dient, or one can take a series of shorter steps instead and travel
approximately the same distance along the gradient.

We discuss the effects of changing the perturbation type in
Sec. III D. We also note that although many of the quantities
described here are time-varying, in the following sections, we will
drop the explicit time dependence notation for the sake of brevity.

B. Gradient descent in the MGD framework
Here, we describe the practical implementation of a model-free

gradient descent framework in hardware, which we term multi-
plexed gradient descent (MGD). To better understand the algorithm
from a hardware perspective, we will run through the same com-
putation previously described, but from the viewpoint of a single
parameter (e.g., a synapse weight in a hardware neural network). The
process begins with the application of a local perturbation θ̃i that
slightly modifies the base value of the parameter θi [Fig. 1(a), inset].
As previously described, this perturbation—and any other perturba-
tions from other parameters—induce a change in the cost C̃ on top
of the baseline cost C0 such that the cost at the output is C = C0 + C̃.
C̃ may be extracted from C either by direct subtraction of C0 or, in
some analog scenarios, by a simple highpass filter. The resulting C̃
signal is broadcast globally to all parameters, so our parameter θi has
access to it. (Note that although Fig. 1 shows a wireless broadcast

tower for illustrative purposes, in most hardware platforms, this will
be a wired connection.) However, we must assume that parameters
other than the ith are also causing modulations in the cost as well. To
our parameter θi, these other modulations are unwanted and must
be filtered out. As shown in Fig. 1(b), for the parameter i to extract
only its own effect on the cost, it can just integrate the product of its
local perturbation θ̃i and the global cost signal C̃ it receives. This has
the effect of isolating the contribution from θi due to the pairwise
orthogonality of the perturbation signals. From Eq. (3), this inte-
gration produces the partial gradient approximation Gi ∝ ΔCi/Δθi.
The parameter can then use the Gi value directly to reduce the cost
by updating itself according to a gradient descent step

θi → θi − ηGi, (4)

where η is the learning rate. When all the parameters of a system
perform this operation in parallel, the resulting weight update cor-
responds to gradient descent training of the entire network. Because
all the parameters are being perturbed and updated simultaneously,
we call the framework multiplexed.

Looking at this process from the hardware perspective, one
must also examine several practical considerations such as when to
perform the weight update, how long to integrate the gradient, and
so forth. We introduce the following time constants to provide a
framework for managing these considerations in the MGD context.

● τp is the timescale over which perturbations occur. In a
digital system, the perturbations of each parameter would
be updated to new values every τp. In an analog (continu-
ous) system, τp corresponds to the characteristic timescale of
the perturbations. For instance, if using sinusoidal perturba-
tions, it corresponds approximately to the inverse of the total
bandwidth the frequencies occupy.

● τθ is the gradient-integration time [i.e., T in Eq. (3)]. It sets
how often parameter updates occur and also determines how
accurate the gradient approximation will be. For each time
period τθ, the gradient approximation G is integrated, and at
the end of that period, the parameters are updated according
to Eq. (4).

● τx controls how often new training samples x, ŷ are shown
to the hardware. After each τx period, the old sample is dis-
carded and a new one is applied, generating new outputs y
and cost C.

The values of the time constants τθ and τp have a large impact
on the particulars of the training, and particular choices of τθ and
τp allow the implementation of certain conventional algorithms in
numerical analysis. For instance, consider the implementation of
the forward finite-difference algorithm within this framework. To
do this, we start with discrete perturbations, such that every τp
only a single parameter is perturbed by Δθ, and the parameters are
perturbed sequentially as shown in Fig. 1(c). When parameter i is
perturbed by Δθi, the cost changes by ΔC and the resulting partial
gradient ΔC/Δθi ≈ ∂C/∂θi is stored in Gi. Now if we set τθ = Pτp,
where P is the number of parameters in the network, this is exactly
equivalent to computing a finite-difference approximation of the
gradient: each τp, one element of the gradient is approximated, and
after Pτp, every partial gradient Gi has been measured and stored.
Since τθ = Pτp, the weight update only comes after all the partials
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FIG. 2. Different optimization algorithms can be implemented in the MGD framework by changing the values the time constants, τp, τθ, and τx, and varying the perturbation
type. Shown here are the parameter values θ that are updated every τθ, perturbation θ̃ with characteristic time constant τp, computed cost C, and cost-modulation C̃.
Varying τθ and τx and perturbation type allows MGD to implement a variety of optimization algorithms including (a) finite-difference, (b) coordinate descent, (c) simultaneous
perturbation stochastic approximation (SPSA), and (d) an analog implementation. Each line color in the upper two plots corresponds to one of the three parameters in this
simulation.

of G has been collected, just as in finite-difference. This process is
shown schematically in Fig. 2(a).

Similarly, other optimization algorithms can be implemented
simply by modifying the values of the time constants. For exam-
ple, using same procedure as above but with the integration time
reduced to a single timestep, i.e., τθ = τp, corresponds exactly to
coordinate descent. In this case, rather than storing each Gi until all
the partials of the gradient are fully assembled, the weight update
is applied immediately after each Gi is computed. This may be
more appealing from a hardware perspective than a finite-difference
approach, as Gi can be used for the weight update and imme-
diately discarded—unlike finite-difference, it does not require a
per-parameter memory to store Gi until the weight update is exe-
cuted. This coordinate-descent process is shown schematically in
Fig. 2(b).

As a third example, it is possible to implement simultaneous-
perturbation stochastic approximation (SPSA)13 by only changing
the values of the time constants and the form of the perturbation.
In this case, τθ = τp and a random, discrete {+Δθ,−Δθ} perturba-
tion is applied to every parameter every τp, as shown in Fig. 2(c).
Similar to coordinate descent, this configuration avoids the need for
additional per-parameter memories, as Gi values do not need to be
stored. This method avoids the need for global synchronization of
the parameters—the perturbations do not need to be sequential, and
instead can be generated locally and randomly at the parameter.

In addition to being able to choose these specific optimiza-
tion algorithms, by varying the time constants τp and τθ one can
also implement entirely new optimization algorithms. For instance,
in Fig. 2(d), we show an MGD implementation on an analog sys-
tem using sinusoidal perturbations that does not correspond to any
of the aforementioned methods. In this case, τp corresponds to the

timescale 1/Δ f , where Δ f is the perturbation bandwidth, the differ-
ence between the maximum and minimum perturbation frequency.
Additionally, in the analog case, there is no discrete update of the
parameters, and instead, τθ is an integration time constant. Unlike
the discrete case, which accumulates G for τθ time then resets it to
zero, θ is continuously updated with the output of an lowpass filter
with time constant τθ (see Algorithm 2).

Because modern machine learning datasets are composed of
many training examples (often tens of thousands), τx, the time
constant that controls how often training samples are changed, is
critical. In fact, by setting τx appropriately, mini-batching can even
be implemented in hardware that only allows 1 sample input at a
time. The batch size is determined by τθ/τx, the ratio of the gradi-
ent integration time τθ, and the sample update time τx. When τx is
shorter than τθ, multiple samples are shown to the network during
a single gradient integration period. As the sample changes, the gra-
dient approximation G will then include gradient information from
each of those samples. This integration-in-time process is arithmeti-
cally identical to summing multiple examples in parallel (as is often
done on a GPU). As a concrete example, for hardware that accepts
one input example at a time, if τθ = τx, the batch size is 1, but if
τθ = 4τx, the batch size is 4. This is shown in Fig. 3 for the same
network as in Fig. 2 and using simultaneous discrete perturbations.
In Sec. III, we demonstrate that batch sizes as large as 1000 function
correctly in MGD.

In summary, setting just three time constants and the perturba-
tion type allows the MGD framework to implement a wide range
of variations of gradient descent and, depending on the desired
approach, one can tailor their training to the needs of the problem
and the hardware. For example, MGD can match backpropagation
by making τθ arbitrarily long, as we show in Sec. III B—the MGD
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FIG. 3. Illustration of batching in a small network with three parameters and two
x inputs, training on a dataset with four samples. The parameters θ are updated
every τθ, and during that time, all four training samples are shown to the network
and integrated into the gradient approximation G (batch size τθ/τx = 4). G accu-
mulates each timestep and is reset during the weight-update process after each τθ
period. Note that the updates to θ occur in the opposite direction of G, per Eq. (4).

approximation to a partial derivative converges to the true partial
derivative as τθ becomes arbitrarily long. Thus, the various para-
meter update steps presented above can be made arbitrarily close to
their analytical definitions as implemented using digital arithmetic
and backpropagation. At the same time, we show that short τθ val-
ues can work equally well. In practice, hardware considerations, such
as write-speed limitations, may require an intermediate τθ value, as
we discuss in Sec. IV. These features allow the MGD framework to
leverage the same training techniques that have been so successful
for training machine learning models, while also being compatible
with new and emergent hardware.

ALGORITHM 1. Discrete algorithm.

1: Initialize parameters θ
2: for n in num_iterations do
3: if (n mod τx = 0) then
4: Input new training sample x, ŷ
5: if (n mod τx = 0) or (n mod τθ = 0) then
6: Set perturbations to zero θ̃ ← 0
7: Update baseline cost C0 ← C(f (x; θ), ŷ)
8: if (n mod τp = 0) then
9: Update perturbations θ̃
10: Compute output y ← f (x; θ + θ̃)
11: Compute cost C ← C(y, ŷ)
12: Compute change in cost C̃ ← C − C0

13: Compute instantaneous error signal e← C̃θ̃/Δθ2

14: Accumulate gradient approximation G← G + e
15: if (n mod τθ = 0) then
16: Update parameters θ ← θ − ηG
17: Reset gradient approximation G← 0

ALGORITHM 2. Analog algorithm.

1: Initialize parameters θ
2: for t = 0 to T step dt do
3: if (t mod τx = 0) then
4: Input new training sample x, ŷ
5: Update perturbations θ̃
6: Compute output y ← f (x; θ + θ̃)
7: Compute cost C(t)← C(y, ŷ)
8: Compute discretized highpass

C̃(t)← τhp
τhp+dt (C̃(t − dt) + C(t) − C(t − dt))

9: Compute instantaneous error signal e(t)← C̃θ̃dt/Δθ2

10: Update gradient approximation
G(t)← dt

τθ+dt (e(t) +
τθ
dt G(t − dt))

11: Update parameters θ ← θ − ηG

III. SIMULATION OF MGD
A. Introduction

To characterize the utility of the MGD framework, we first sim-
ulated its performance on modern machine learning datasets. The
goal of the simulator was not to perform gradient descent as fast
as possible on a central processing unit (CPU) or GPU, but rather
to emulate hardware implementing MGD and evaluate its poten-
tial performance in a hardware context. In particular, we used the
simulator to estimate the speed, accuracy, and resilience to noise
and fabrication imperfections. The simulator was written in the
Julia language and can be run on a CPU or GPU and is available
online.30 The algorithms used in the simulation are shown in the
Algorithms 1 and 2 boxes, with the parameters and their types in
software shown in Table I.

TABLE I. Algorithm parameters and variables used in the simulations.

Description Symbol
Analog

or digital

Change in the cost due to perturbation C̃ Both
Perturbation to parameters θ̃ Both
Parameters θ Both
Input sample x Both
Target output ŷ Both
Network output y Both
Cost C Both
Unperturbed baseline cost C0 Digital
Gradient approximation G Both
Instantaneous error signal e Both
Learning rate η Both
Perturbation amplitude Δθ Both
Input-sample change time constant τx Both
Parameter update time constant τθ Both
Perturbation time constant τp Digital
Highpass filter time constant τhp Analog

APL Mach. Learn. 1, 026118 (2023); doi: 10.1063/5.0157645 1, 026118-5

© Author(s) 2023

D
ow

nloaded from
 http://pubs.aip.org/aip/am

l/article-pdf/doi/10.1063/5.0157645/18017061/026118_1_5.0157645.pdf

https://pubs.aip.org/aip/aml


APL Machine Learning ARTICLE pubs.aip.org/aip/aml

FIG. 4. Solving the 2-bit parity (XOR) problem using a 2-2-1 network with nine parameters, τp = 1, and batchsize τθ/τx = 1. (a) Mean cost over dataset vs epochs the on a
2-2-1 feedforward network averaged over 1000 random initializations and trained with MGD with different gradient integration times τθ (solid lines). The dashed line shows
the same network and dataset trained using backpropagation. (b) The same MGD training data as in part (a) plotted vs time (number of perturbations τp) instead of epochs.

B. Equivalence to backpropagation
We first verified that the simulation was able to minimize the

cost for a sample problem, and that it was equivalent to gradient
descent via backpropagation with appropriate parameter choices.
For this initial comparison, we chose to solve the 2-bit parity prob-
lem by training a 2-2-1 feedforward network with nine parameters
(six weights, three biases). We simulated the problem with a very
large value for τθ and τθ = τx such that we achieved a very good
approximation of the gradient in G for each training sample. We
then ran the same problem using a τθ value of 1 so that the gra-
dient approximation G for each sample was relatively poor. We
measured both the number of epochs and the amount of time (num-
ber of iterations of the simulation) for the two experiments, and the
results are shown in Fig. 4. Here, an epoch was defined in the typical
way—equivalent to the network being shown all training examples
of a dataset.

Comparing the two scenarios in terms of epochs in Fig. 4(a),
one can observe that a value of τθ = τx = 1000 resulted in the system
following a nearly identical training trajectory as backpropagation.
This is as expected—for each sample shown to the network, the
gradient approximation G has 1000 timesteps to integrate a very
accurate estimate that should be very close to the true gradient com-
puted by backpropagation. When τθ = τx = 1, however, each sample
only has a single timestep to estimate the gradient before moving on
to the next sample. As a result, the samples have to be shown to the
network many more times to minimize the cost, resulting in a much
larger number of epochs.

However, while the τθ = τx = 1 case uses the sample data less
efficiently (requiring more epochs), there is actually a trade-off for
data efficiency and run time. If we plot the cost vs iterations rather
than vs epoch, we get a more accurate estimate of how long it will
take hardware to train in terms of real time. As shown in Fig. 4(b),
one can see that the shorter τθ and τx values take approximately half
the time to minimize the cost as the longer values. These examples
serve to highlight that while longer integration times produce a more
accurate gradient approximation, integration times as short as τp
may also be used to train a network, consistent with the findings of
Ref. 13. In fact, shorter integration times may even be faster to train
in terms of operational time.

To quantify the effect of longer integration times on the accu-
racy of the gradient approximation, we measured how the gradient

approximation G converged to the true gradient ∂C/∂θ (as com-
puted by backpropagation) as a function of time. For this exper-
iment, we ran the simulation with τθ =∞ and τx = τp = 1 so that
it continuously integrated G without ever resetting or updating the
parameters. As the simulation ran, we repeatedly computed the
angle between the true gradient ∂C/∂θ and the approximation G.
The results are shown in Fig. 5, showing the solution to the 2-bit
parity, 4-bit parity, and NIST7x7 problems. The NIST7x7 dataset is
a small image recognition problem based on identifying the letters
N, I, S, and T on a 7 × 7 pixel plane. The dataset has the property
that it cannot be solved to greater than 93% with a linear solve for
a 49-4-4 feedforward network with sigmoidal activation functions.
We also chose this network and dataset because it was small enough
to perform many different simulations to acquire statistics, and the
problem space is large enough that random solutions are unlikely.

As expected, the angle decreased with time as G aligned with
the true gradient. The time axis is in units of τp, which is the mini-
mum discrete timestep in this system. For a real hardware platform,
this timestep is approximately the inference time of the system. In
general, the more parameters the network has, the longer it takes to
converge to the true gradient.

FIG. 5. Angle between the gradient approximation G and the true gradient vs time.
The n-bit parity networks used n-n-1 networks, while the NIST7x7 networks used
a 49-4-4 network. The networks have 9, 25, and 220 parameters, respectively, and
the datasets have 4, 16, and 44 136 training examples, respectively. The solid line
shows the median angle value for 100 random initializations for the n-bit parity and
15 random initializations for the NIST7x7 dataset. The shaded regions show the
first to third quartile values.

APL Mach. Learn. 1, 026118 (2023); doi: 10.1063/5.0157645 1, 026118-6

© Author(s) 2023

D
ow

nloaded from
 http://pubs.aip.org/aip/am

l/article-pdf/doi/10.1063/5.0157645/18017061/026118_1_5.0157645.pdf

https://pubs.aip.org/aip/aml


APL Machine Learning ARTICLE pubs.aip.org/aip/aml

C. Details of mini-batching
We next investigated in more detail how τθ and τx affect the

training time. Longer τθ values result in a more accurate gradi-
ent approximation, but reduce the frequency of parameter updates.
Using a fixed, low η value, we trained a 2-2-1 network to solve 2-bit
parity (XOR) for 100 different random parameter initializations,
varying τθ but keeping the batch size τθ/τx constant at either 4 or 1.
Since the 2-bit parity dataset is composed of four (x, ŷ) pairs, τx = 4τθ
is analogous to gradient descent—all four samples are integrated into
the gradient approximation G before performing a weight update.
When τx = τθ, the network performs stochastic gradient descent
(SGD) with a batch size of 1. Figure 6(a) shows the training time as
a function of τθ for these two cases. Here, training time corresponds
to the time at which the total cost C dropped below 0.04, indicating
the problem was solved successfully. In the case where the batch size
was 1, we observed that increasing τθ increased the training time.
However, when the batch size was 4, increasing τθ had little effect on
the training time.

As with any training process, the training can become unsta-
ble at higher η values and fail to solve the task. Since the results
in Fig. 6(a) were only for a fixed learning rate, we also wanted to
examine the effect of τθ on the maximum achievable η. Here, we
defined the “max η” as the maximum learning rate where the net-
work successfully solved the 2-bit parity problem for at least 50 out
of 100 random initializations. As seen in Fig. 6(b), as τθ is increased,
the max η decreases, resulting in longer minimum training times.
This was true whether the batch size was large or small, although the
larger batch sizes had higher achievable η values overall.

From these results, we infer that a poor gradient approximation
taken with respect to all training examples is more useful than col-
lecting an accurate gradient with respect to a single example. Stated
another way, waiting a long time for an extremely accurate gradient
then taking a large step is less productive than taking a series of short
(but less accurate) steps. This is an important conclusion for hard-
ware, as it shows that implementing an effective gradient descent
process in MGD does not necessarily require additional memory
to store accurate, high-bit-depth gradient values. Note that in our
implementation G accumulates with time and so the size of the
parameter update ηG from Eq. (4) grows proportionally to the inte-
gration time. This meant that when τθ was larger the effective step

in the direction of the gradient was also larger, and so for fixed η
the rate of training therefore remains approximately constant. If this
was not the case, whenever τθ was doubled, we would also need to
reduce η by half to maintain the same approximate rate of training.

D. Analog and digital perturbations
The parameter perturbations can take many different forms,

as long as they are low-amplitude and their time averages are pair-
wise orthogonal or, in a statistical setting, are uncorrelated.14 We
have implemented four types of perturbations: sinusoidal pertur-
bations, sequential discrete perturbations, discrete code perturba-
tions, and random code perturbations. Sinusoidal perturbations are
like those shown in Fig. 1(a), where each parameter is assigned
a unique frequency. Sequential discrete perturbations refer to the
case where parameters are sequentially perturbed, one at a time,
by +Δθ, as described in the finite-difference implementation of
Sec. II B. “Code” perturbations are simultaneous discrete perturba-
tions of {−Δθ,+Δθ} for every parameter every τp timesteps. We call
them code perturbations due to their similarity to code-multiplexing
(spread-spectrum) techniques used in wireless communication tech-
nologies. There are two flavors of code-perturbations: the first
consists of a predefined set of pairwise-orthogonal square wave
functions that take the values of {−Δθ,+Δθ}. Each of these pertur-
bation patterns is a deterministic sequence, and no two parameters
have the same sequence. One example of these is the Walsh codes
used in modern cell-phone communications. The second consists
of randomly generated sequences of {−Δθ,+Δθ} that are pairwise
uncorrelated. We call these “statistically orthogonal.” The statisti-
cally orthogonal case is slightly less efficient than the deterministic
orthogonal codes since perturbations from multiple parameters
interfere with each other more in C̃—any finite sample of the pertur-
bations will have a non-zero correlation that decreases to zero with
sample size. However, the use of the statistically orthogonal version
allows the perturbations to be generated locally and randomly. These
perturbations may be very useful in hardware implementations, as
they are spread-spectrum and single-frequency noise from external
sources is unlikely to corrupt the feedback signals.

To compare the training performance between different per-
turbation types, we applied four different perturbation types to the
same 2-2-1 network described in Sec. III C in order to solve the

FIG. 6. Effect of τθ on the training time of the 2-bit parity (XOR) problem. (a) Training time as a function of τθ and batch size. (b) Effect of τθ on the maximum achievable
learning rate η and corresponding minimum training time.
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FIG. 7. Demonstrating equivalence between the various perturbation types by
measuring their time to train a 2-2-1 network on the 2-bit parity (XOR) problem.
Each box plot represents the results of 100 random initializations. The hyper-
parameters were τx = 250, τθ = 1, η = 0.05, τp = 1 (discrete), and Δ f = 0.3
(analog).

2-bit parity problem. In particular, we aimed to show that train-
ing can happen in both a purely analog or purely digital way. In
practice, many systems have hybrid analog–digital features, and a
combination approach may be used.

Figure 7 shows the training time distributions for the 2-bit par-
ity problem using the different perturbation types. The bandwidth
for sinusoidal perturbations was set to be 1/2τp. As expected, we
found that the different perturbation types are approximately equiv-
alent in terms of speed of training. This equivalence makes sense
when one considers that the feedback from C̃ has a finite band-
width that must be shared between all the parameters—no matter
the encoding (perturbation) scheme, the information carried in that
feedback to the parameters will be limited by that finite bandwidth.

E. Operation on noisy or imperfect hardware
The fabrication defects and signal noise present in emerging

hardware platforms pose significant challenges for current training

techniques in hardware. For example, weight parameters may differ
from design or update non-deterministically, causing a discrepancy
between the model and actual hardware that can negatively affect
training.8,31,32 For example, in Ref. 32, a simulated network achieves
97.6% accuracy for the MNIST dataset, but the hardware diffractive
optical network implementation only obtains 63.9% accuracy after
direct transfer of the pre-trained model to their hardware without
some in situ training, while Ref. 33 shows that a 3% component vari-
ation can lead to a 7% drop in classification accuracy without error
correction. Reference 8 shows how small discrepancies in modeled
parameters can blow-up in general hierarchical problems. In their
toy problem, a 0.5% error in a model parameter leads to a 30% error
in output after 20 layers. The solutions to these non-idealities can
be cumbersome for offline training. For example, the actual value
of the weights may have to be regularly measured during train-
ing,31 imperfections may be carefully measured and accounted for
in the models,33,34 or weights may be quantized with low bit-depth,
where the bit depth is chosen such that the system can be mod-
eled and controlled accurately despite device-to-device variations.
This is common in hardware platforms, such as memristive cross-
bar arrays35 or phase change materials,36 where bit depths of 6-8 can
be achieved.

Here, we investigate the effects of three different types of imper-
fections and noise that could affect hardware systems: (1) stochastic
noise on the output cost Cnoise, (2) stochastic noise on the parameter
update θnoise, and (3) per-neuron defects in the activation function,
where each neuron has a randomly scaled and offset sigmoidal acti-
vation function that is static in time. These tests were performed on
the NIST7x7 dataset using the previously described 49-4-4 network
with 220 parameters and with τx = τθ = 1 unless otherwise stated.

In the first test, we added Gaussian noise with mean zero and
standard-deviation σC to the cost, applied every timestep such that
noise C(t) = Cideal(t) + Cnoise(t; σC). For example, in optical hard-
ware, this could be noise due to laser fluctuations. Noise in the cost
is also equivalent to any other Gaussian mean-zero noise affecting
the accumulated gradient G. Figure 8(a) shows the effect on the

FIG. 8. Effect of noise applied to the cost signal. (a) Training time vs σC, the amplitude of the Gaussian noise added to the cost signal C (normalized to the perturbation
magnitude ∣θ̃∣). The training time is the median time to >80% accuracy for 10 random parameter initializations. (b) Effect of noise on maximum η and training time. The
maximum η is the largest learning rate for which >80% of the 10 random initializations converged; the corresponding training time at that maximum learning rate is shown on
the right axis.
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FIG. 9. Effect of noisy (stochastic) parameter updates on solving XOR in a
2-2-1 feedforward network, measured for various noise amplitudes σθ. [(a) and
(b)] Effect of parameter update noise on the probability of the training converging,
as a function of learning rate η. Noise was much more likely to prevent conver-
gence for (a) τθ = 1 than (b) τθ = 100. Convergence was defined as reaching
93% accuracy within 5 × 107 iterations. Statistics are from 25 random parameter
initializations. [(c) and (d)] Effect of parameter update noise on training time as a
function of the learning rate η for integration times (c) τθ = 1 and (d) τθ = 100.
Only η values sets with >50% convergence are shown—in (c), σθ = 0.3 did not
have η values that met this criteria.

training time for different learning rates as σC was increased. For
a given learning rate, there is a threshold amount of noise below
which the training time is minimally changed. However, as cost
noise increases, the training time eventually increases and ultimately
stops converging.

To see how this noise would affect the minimum training
time for optimized learning rates, we also measured the maximum
achievable η value for a range of σC. Figure 8(b) shows this maxi-
mum η value vs cost noise, and corresponding minimum training
time. The trend indicates that the lower the cost noise σC, the higher
we can make η and the faster we can train. Stated in reverse, one can

compensate for large amounts of cost noise in a system simply by
reducing the learning rate.

In the next test, we analyzed the effect of noisy parameter
updates on the training process. For this experiment, whenever any
parameter was updated, the update included a randomly applied
deviation. Thus, the update rule became

θ ← θ − ηG + θnoise, (5)

where θnoise was Gaussian with mean zero and standard deviation σθ,
normalized by Δθ, such that θnoise ∼ N (0, σθ/Δθ). This kind of noise
is often seen in analog memories without closed-loop feedback.37,38

We found that larger values of σθ can prevent convergence
entirely [Fig. 9(a)]. Curiously, in the presence of this noise, increas-
ing η can actually improve the convergence of the problem, as
highlighted by the σθ = 0.1 and σθ = 0.3 lines in Fig. 9(a). We believe
this is likely because at very small η values θnoise will overwhelm the
very small ηG in Eq. (5). By making the η term larger, one can pre-
vent ηG from being drowned out by θnoise. Obviously, at very large η
values, the usual gradient-descent instability starts to dominate and
the convergence approaches zero. For a given η, we found that small
values of σθ marginally increase the training time, but the effect is
less significant than simply changing the learning rate η [Fig. 9(c)].

Another way to reduce the impact of θnoise is to increase the
integration time of the gradient. When τθ is increased, the value
of G is accumulated for a longer time and becomes proportionally
larger. For instance, when τθ is 100 times larger, the value of ηG
becomes 100 times larger, meaning the effect of θnoise in Eq. (5) is
relatively 100 times smaller. The result can be seen in Figs. 9(b) and
9(d), where even the largest σθ value has little effect on the result.

In the final test, we analyzed the effect of including “defects” in
the neuronal activation functions. Here, neuronal activation func-
tions were no longer identical sigmoid functions, but had fixed
random offsets and scaling that were static in time. These varia-
tions were meant to emulate device-to-device variations that may
be found in hardware, for instance, in analog VLSI neurons.39 The
sigmoid activation function for each neuron k was modified to a
general logistic function fk(a) = αk(1 − e−βk(a−ak))−1

+ bk. The vari-
ations were all Gaussian, and the scaling factors αk, βk had a standard
deviation σa and a mean of 1, while the offset factors ak, bk also had
a standard deviation of σa but were mean-zero.

FIG. 10. Effect of adding random offsets and scaling to each neuron’s sigmoid activation function. (a) Training time vs σa, the standard deviation of activation-function offsets
and scaling. (b) Converged fraction vs the standard deviation of the logistic function parameters. The results are statistics of 25 different random network initializations and
activation-function randomizations. Convergence is defined as reaching 80% accuracy within the time of the simulation.
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As seen in Fig. 10(a), adding defects to the network’s activa-
tion functions had a relatively small effect on the training time.
Even with relatively large variations in the activation functions
(σa = 0.25), the network only took about twice as much time to fully
train the NIST7x7 dataset. However, deviations that were too large
(σa > 0.25) caused issues with the training being able to converge.
This is likely due to the output neurons being so scaled and offset
that it was no longer possible for them to produce the correct output.

Overall, we found that MGD is robust against different types
of noise and fabrication imperfections of a reasonable scale as those
that would be seen in a real hardware system. In general, these non-
idealities affected the training speed of the network, but did not
prevent the desired problem from being solved.

F. Modern dataset results
To assess the scalability and relevance of MGD for larger

machine learning problems, we compared MGD and backpropaga-
tion on a variety of tasks for different network architectures and
hyperparameters. Table II compares the accuracies obtained with
MGD and backpropagation for different datasets and various hyper-
parameter choices (τθ, τp, η, batch size), with τx fixed at 1. To make
an effective comparison, for the backpropagation results, we used a
basic stochastic gradient descent (SGD) optimizer without momen-
tum. Both strategies used a mean squared error (MSE) cost function.
These choices allowed us to avoid confounding effects from more
complex strategies, although we note that MGD is capable of imple-
menting several of these more complicated features (e.g., momen-
tum, dropout, etc.). In all cases we used the same network architec-
tures for both sets of results. The networks architectures used were
not selected to reach state-of-the-art accuracy values, but instead
smaller networks were chosen for purposes of rapid testing and sta-
tistical analysis. To improve the accuracy further, more advanced
network architectures (e.g., more layers) or optimizers (e.g., adding
momentum) would be needed. For the purposes of meaningful com-
parison, we measured the accuracy obtained in the MGD process
after fixed numbers of timesteps. This allowed us to estimate actual
training time for various hardware configurations in Sec. IV A.

The CIFAR-10 network was composed of three convolution
and max-pool layers followed by a fully connected layer. The

convolutional filters were 3 × 3 with 16, 32, and 64 output chan-
nels, respectively, stride 1, and relu activation function outputs. Each
convolution was followed by a 2 × 2 max-pool layer. The final fully
connected layer converted the 256 outputs of the convolutional lay-
ers to the 10 classes, and no softmax was used. The Fashion-MNIST
network was similarly composed, comprising two convolution and
max-pool layers followed by a (32 × 10) fully connected layer and no
softmax. The networks used to solve NIST7x7 and XOR were fully
connected feedforward networks with sigmoidal activation func-
tions. To make the comparisons in Table II as fair as possible, the
backpropagation accuracies of each row were maximized by train-
ing the networks with the listed batch size and a variety of η values.
The backpropagation accuracy reported is the highest median accu-
racy obtained for all the η values tested, with the median taken over
five random initializations that each ran for 2500 epochs (long after
the accuracy had converged).

By training networks on the 2-bit parity, NIST7x7, Fashion-
MNIST, and CIFAR-10 datasets, we found that MGD approached
the solution-accuracy of backpropagation. However, even after 107

steps, we observed the MGD-trained networks still had slightly lower
accuracy than could be achieved by backpropagation. This is likely
related to convergence criteria of the gradient approximation not
being met, due to fixed η values—for instance, the theory underly-
ing the SPSA process only guarantees convergence with a learning
rate that asymptotically approaches zero.13 In general, we observed
that while larger learning rates achieved higher accuracies earlier on,
lower learning rates achieved higher accuracies at longer times (see,
e.g., NIST7x7 result). Therefore, custom learning rates are likely to
achieve more optimal training time and accuracy.

The simulations also indicate that changing τθ had a marginal
effect on the maximum accuracy of MGD for a fixed η value for the
larger datasets shown here, with increased values of τθ leading to
slightly higher final accuracies. This may be because longer τθ values
produce more-accurate gradient estimates and allow the network to
better optimize the weights as the system approaches a local min-
ima in the cost, although more experiments and statistics are needed
to verify if this effect is occurs, in general. Fortunately, our results
show this effect is relatively small, allowing the hardware-designer
flexibility in how often weight updates need to be performed.

TABLE II. Performance of MGD training on four different datasets. The setup, MGD parameters and achieved test accuracies are shown. The best accuracy achieved with
training via backpropagation for the same network is shown in the final column for comparison.

Setup Parameters Accuracy

Task Network ∣θ∣ τθ τp η Batch size 104 steps 105 steps 106 steps 107 steps Backprop

2-Bit parity 2-2-1 9 1 1 5 1 100% 100% 100% 100% 100%
N-I-S-T 49-4-4 220 1 1 3 1 38% 81% 94% 97.7% 99.8%
N-I-S-T 49-4-4 220 1 1 0.5 1 22% 45% 93% 98.7% 99.8%
Fashion-MNIST 2-layer CNN 14 378 1 1 9 1000 34.2% 66.3% 79.3% 83.5% 88.6%
Fashion-MNIST 2-layer CNN 14 378 10 1 9 1000 34.3% 66.3% 79.2% 83.4% 88.6%
Fashion-MNIST 2-layer CNN 14 378 100 1 9 1000 35.3% 66.3% 77.7% 84.7% 88.6%
Fashion-MNIST 2-layer CNN 14 378 1000 1 9 1000 35.3% 59.6% 79.1% 86.1% 88.6%
CIFAR-10 3-layer CNN 26 154 1 1 9 1000 12% 23% 43.8% 60.7% 68%
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These results show explicitly that MGD is a viable technique
for training emerging hardware platforms on real machine learning
datasets. Previous theoretical studies have focused on convergence
proofs and computation of gradient approximations to varying
degrees of accuracy13,14 or on simplified problems, such as linear
activation functions.40 While these theoretical results are clearly
important and necessary, they are not sufficient to give insight into
the applicability of these optimization techniques to real machine
learning problems on experimental hardware platforms. Meanwhile,
previous experimental and simulation studies have for the most part
focused on small scale problems for which 100% accuracy is triv-
ial, such as XOR,15,16 few-bit parity,17,21,22 the iris dataset,25 or other
similar toy problems.18,19,26 These are not representative of larger
machine learning datasets, which typically have on the order of tens
of thousands of training examples and are trained on networks with
even more parameters.

These results go further than any of these previous studies,
by elucidating the utility of these techniques for larger, modern,
machine learning datasets, and implementing a framework that can
connect different optimization techniques (SPSA, finite-difference,
approximate gradient descent) via specific hardware parameters.

It is also worth noting that the random weight change (RWC)
algorithm has been implemented in memristor networks24,41 previ-
ously, and while superficially similar to MGD is functionally very
different. RWC is not an approximate gradient descent technique,
since the weight update is not scaled by the magnitude of the change
in the cost, but rather random perturbations are either kept or dis-
carded based on whether or not they improve the cost. Because
of this, it scales more poorly with number of parameters than
the optimization techniques we have implemented in the MGD
framework.

IV. HARDWARE CONSIDERATIONS
A. Time constants

While the MGD framework is general, individual hardware
platforms may have different practical considerations that dictate
the optimal choices for the different time constants. Here, we dis-
cuss potential issues for implementation on hardware and point out
trade-offs that may exist.

Perturbation speed (τp): In many hardware platforms, per-
turbing parameters directly may be difficult or undesired either due
to memory-endurance or update-speed concerns. However, it is not
necessary to perturb parameters directly—instead, one may perturb
a separate element that is in series with the parameter. For instance,
in a photonic MZI array, the weights may be implemented with slow
(∼ms) thermal or mechanical phase shifters, but the small perturba-
tion could be implemented with a fast (∼ns) electro-optic modulator,
such as a depletion46 or opto-mechanical47 modulator. Alternatively,
in a memristor system, the perturbation could be implemented with
a single sub-threshold transistor in series with the memristor.

For perturbative-style techniques, such as MGD, to function
properly, τp should be slower than the system’s inference time,14

which includes the cost calculation and broadcast processes. If
τp is too short, it can introduce misalignment between the input
perturbation and resulting cost feedback.

Parameter update (τθ): When performing gradient descent on
hardware, parameters must be updated multiple times. For a training

period of length T, the weights will be updated T/τθ times. For some
hardware platforms, it may be advantageous to reduce the number of
parameter updates, for instance, if the parameters take a long time to
update, the update process requires a large amount of energy, or the
underlying parameter values are stored in memory elements with a
limited lifetime. Fortunately, Table II shows that for networks with
large numbers of parameters, τθ can be increased without greatly
impacting the overall training speed or final accuracy.

Changing training examples (τx): The value of τx is limited by
the speed with which training examples can be input to the network.
For most technologies, τθ or τx will not be limiting factors, as x and
ŷ samples can be provided by a conventional computer or FPGA at
nanosecond timescales. However, it should be noted that MGD will
not function correctly if τx is shorter than the inference time of the
hardware, and this will likely be the practical limit for τx. τx is also
used as a way of controlling the batch size (given by τθ/τx). The par-
ticulars of the task and dataset may determine the desired batch size,
and this may have some effect on τx, for example, if the minimum
allowable value of τθ is very long.

Calculation of cost: The calculation of the cost is performed
only at the output of the system, and therefore it is acceptable
that the hardware used in its computation be more expensive and
complex. In integrated electronic systems, the cost can be straight-
forward to implement, although it may occupy more relatively
more chip real-estate than other elements. However, for very exotic
hardware platforms, this cost computation may still be difficult to
perform on-chip. This can be addressed by using a non-standard
cost function or by using a computer to calculate the cost off-chip.
However, the input and output to an off-chip computation may limit
the speed of the cost computation and also limit the speed of the
global broadcast of C̃ and may be another speed bottleneck in some
hardware systems.

Based on the literature, some estimates of plausible time con-
stants that could be implemented in hardware are shown in Table III
with the corresponding times to solve benchmark tasks, based on the
results from Table II. Examples from the literature of hardware plat-
forms that could implement these sets of parameters are shown in
the final row. By comparison of these results with the final column in
Table III, we see that using realistic estimates for emerging hardware,
MGD could be significantly faster than current implementations
using backpropagation.

B. Analog and digital implementations
There are a few notable differences for an analog vs a digi-

tal hardware implementation of the MGD framework. The discrete
case requires one memory element at the network output to store
C0 (sample-and-hold), and a simple subtraction operation to com-
pute C̃ = C − C0. The network also requires some timesteps to be
devoted to the measurement of C0. This means that for the simple
case of τθ = τp, only a single additional memory element is required
for training the entire hardware system, located at the network cost
output.

However, in the case where τθ > τp, an additional memory
element is required for every parameter (for instance, an analog
capacitor or discrete memory) to perform the gradient integration.
The analog case requires a lowpass filter at every parameter element,
and a single highpass filter on the network output to convert C to
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TABLE III. Approximate training time using MGD for estimated hardware time constants. Data shown are estimated using the same dataset and network architectures used in
Table II. The final column shows the time it takes to get to that same accuracy using backpropagation on a standard GPU or CPU.

HW1 HW2 HW3 Backprop

τx (input-sample update time) 100 ns 1 ns 10 ps n/a
τp (perturbation time) 1 ms 10 ns 200 ps n/a
τθ (parameter-update time) 1 ms 1 μs 200 ps n/a
2-Bit parity training time (104 steps) 20 s 200 μs 4 μs 70 ms†

Fashion-MNIST training time (106 steps) 33 min 20 ms 400 μs 54 s∗

CIFAR-10 training time (107 steps) 5.6 h 200 ms 4 ms 480 s∗

Examples of hardware Chip-in-the-loop, Mem-compute devices,43 Superconducting devices,45 †CPU/∗GPU
integrated photonics with analog VLSI44 athermal resonant
thermo-optic tuning12,42 silicon photonic modulator46

C̃. These could be created with simple analog circuits such as RC or
LR filters. However, we note the use of a continuous highpass filter
can cause implementation issues is some cases. For instance, if η is
too large, rapid changes in θ can generate unwanted frequency com-
ponents that mix with the perturbation input and may negatively
affect the gradient approximation. Moreover, if the dataset is dis-
crete, jumps in x can propagate high frequency noise through C and
C̃, again negatively affecting the gradient approximation. The simu-
lations demonstrate that, in principle, MGD can be used on different
hardware platforms of either an analog or digital nature for network
training.

V. DISCUSSION
An interesting analogy can be drawn between the MGD train-

ing framework and wireless communication systems. In wireless
communications, cell phone users must be able to extract the
signal that is relevant to their own communication from a
received broadcast that contains multiple users’ signals. MGD oper-
ates similarly—each parameter is analogous to an individual cell
phone user and the global cost broadcast C̃ is analogous to the
cell tower transmitter. The broadcasted signal C̃ is available to
all parameters, and each parameter extracts its relevant (gradi-
ent) information—analogous to voice data—from that broadcasted
signal.

The encoding and multiplexing techniques used in wireless
communications are broadly termed “multiple access” techniques in
communications, and there are several varieties of them, including
frequency, time, and code multiplexing. Similarly, in MGD, these
multiplexing techniques are directly analogous to the different per-
turbation types discussed in Sec. III D. For instance, sinusoidal
perturbations can be considered a type of frequency-multiplexing:
each “user” (parameter) has a unique frequency containing infor-
mation relevant to it, and must perform a time-integration to extract
that information from the C̃ signal that contains many other, irrel-
evant signals. Likewise, as mentioned in Sec. III D, the discrete
{−Δθ,+Δθ} perturbation type is analogous to the code-multiplexing
techniques used in modern cell phones.

It is important to note that for a fixed bandwidth broadcast, all
multiplexing techniques have the same nominal spectral efficiency.
However, the particulars of real systems can greatly affect which
multiplexing techniques are most effective. For example, because

code-multiplexing encodes a user’s signal out over a wide time win-
dow and a spread spectrum, it has been shown to have an improved
robustness to multipath distortion and timing errors compared to
time-multiplexing.

Similarly, the various perturbation types described earlier may
operate better or worse depending on the particulars of the hard-
ware network and environment. Newly developed communications
techniques may also be directly applicable to MGD training in real
hardware systems. Key to its usage in hardware, each parameter can
operate like a cell phone—as an independent device with a receiver,
processor, and memory using only information available locally and
from the global broadcast. This contrasts with most other train-
ing algorithms, where error signals must propagate through the
entire network.10 While trivial in software, this type of upstream
information-flow means that hardware neurons must (1) have addi-
tional memory to process the error signal, (2) perform different
operations for forward-inference and reverse error propagation,
and (3) operate in a synchronized fashion to propagate the error
correctly.

In systolic arrays, “broadcast” is often discouraged because the
time and energy of communication is proportional to the number of
inputs by CV2 (with C growing with the number of inputs). Further-
more, as the capacitance is larger, then a larger amplifier is needed
for the communication that also requires energy and area. However,
in other types of analog or emergent hardware, broadcast may be
a more energy and space efficient process. For example, in optical
hardware, a global optical signal could be accessible in a simple slab
waveguide mode. Alternatively, in analog electrical hardware, a sin-
gle electrical plane could be used to carry the C̃ signal back to the
individual parameters.

The MGD framework may also be much more biologically
plausible than other algorithms. There are a host of algorithms
being developed to address the mystery of how the brain learns
and to use biology as inspiration to find more hardware-friendly
approaches.10,48,49 One of the major issues with backpropagation
from both a practical and bio-plausibility standpoint is the need for
a separate type of operation in the forward (inference) and back-
ward (learning) phases. This is not the case for MGD: in MGD, the
training is done in the same configuration used for inference. In a
biological analogy, a global cost signal C̃ could be modeled as some
type of quasi-global chemical signal in the brain.
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In the future, the MGD algorithm could be extended such
that the cost is not global to every synapse, but rather to spe-
cific clusters of neurons/synapses. There are chemical signals in the
brain with these types of properties. The time scales needed for
perturbation may line up with biologically observed effects, such
as short-term plasticity (min)50,51 and synaptic noise.52 MGD is
also consistent with “three-factor” learning rules for which there
is mounting experimental evidence.51 Additionally, although not
explored in this work, MGD should work in a spiking model. Sim-
ilar algorithms that use perturbations in neuron conductance,53

probabilistic synapse transmission,54 or the stochastic nature of
spike-timing arrival55 for reward-based learning have been explored
in small spiking networks.

VI. CONCLUSIONS
In this paper, we show that with realistic timescales for emerg-

ing hardware, training via MGD could be orders of magnitude faster
than backpropagation in terms of wall-clock time-to-solution on a
standard GPU/CPU. The MGD framework allows the implementa-
tion of multiple optimization algorithms using a single, global, cost
signal and local parameter updates. The style of algorithm used (e.g.,
finite-difference, coordinate-descent, and SPSA) can be adjusted via
the tuning of the MGD time-constants and can even be adjusted
during training if desired. Because it is a model-free perturbative
technique (sometimes called zeroth order optimization), it is appli-
cable to a wide range of systems—it can be applied to both analog
and digital hardware platforms, and it can be used in the presence
of noise and device imperfections. This overcomes a major barrier
to using hardware platforms based on emerging technologies, which
are often difficult to train.

Going forward, there are many opportunities to explore the
application of MGD on both large and small hardware systems. The
most direct next step will be to test the training performance in exist-
ing hardware, for example, on photonic42 or memristive crossbar
hardware using a chip-in-the-loop process. This can occur without
even redesigning the hardware, as MGD only requires the ability
to input samples, capture inference output, and modify parameters
when in a chip-in-the-loop configuration. When used in this fash-
ion, the speed will most likely be limited by system I/O. For example,
perturbations can be injected directly to the hardware from an exter-
nal computer, and that same computer could capture the changes
in cost and perform the gradient approximation and calculate the
weight updates. This would allow testing of the algorithm without
any changes to the hardware. Ultimately, to overcome I/O limita-
tions local circuits can be designed be implemented for autonomous
online training. Although not examined in detail here, in this case,
many of the hardware platforms examined would likely have several
orders of magnitude improvement in terms of energy usage as well.

There is also lots of room for improvement on tuning the
technique and its hyper-parameters. In this paper, we performed
very little hyperparameter optimization or regularization, and so
there are likely opportunities for further optimization by examin-
ing techniques, such as dropout, momentum, and regularization.
Also of interest is examining the node-perturbation version of the
algorithm56 on large datasets, which could significantly reduce the
number of perturbative elements and speed up the training process.

While in this paper we only examined feed forward networks,
it has already been demonstrated that is possible to use perturba-
tive techniques to train recurrent neural networks,57 spiking net-
works,54 and other non-standard networks at small scale; future
work remains to demonstrate their utility on problems of modern
interest. This will have applicability to a wide range of neuromorphic
hardware and other physical neural networks.

Ultimately, MGD is well-suited to implementation directly
on-chip with local, autonomous circuits. Although significant
work remains before autonomous learning can be truly imple-
mented without the participation of an external computer, such
a device would be truly enabling for remote and edge-computing
applications, allowing training in-the-field on real-time data.
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